在变压器制造过程中难免会出现一些局部缺陷,如气泡、裂缝、电极毛刺和悬浮导电质点等,这些缺陷会造成电场分布不均匀,从而形成极不均匀电场,进而导致局部放电的产生,促使变压器绝缘劣化。据统计,变压器发生的事故大多是由绝缘劣化造成的。 在局部放电产生的同时,会伴随着很多现象,例如光、电脉冲、超声波、电磁波等,通过检测这些现象可以间接检测到局部放电并进一步反映电介质的绝缘状况,进而判断缺陷类型,甚至预测电气设备的绝缘寿命。因此,目前无论是研究机构、制造厂商,还是电力系统运行部门,都非常看重局部放电的检测技术。
局部放电检测则是发现电缆绝缘中缺陷,保障电缆安全正常运行的重要手段。当电缆绝缘内部存在缺陷时,会导致电缆内部局部放电的发生。通过检测电缆绝缘内部发生局部放电时所产生的声、光、电信号及化学物质,可以实现对电缆局部放电的检测和定位。 而测量局部放电最大的问题就是抗干扰问题,由电缆特性决定的局部放电频率会被空间中许多的无线电干扰,导致不能够最终确定是干扰信号还是局部放电信号,只有确保抗干扰能力,才能提高试验水平。
超声波、电磁辐射、电脉冲、光等都是会伴随着电力变压器局部放电出现,同时能量损耗会在油中放电时产生,介质损耗率也由此衍生出来。现阶段而言,常见的测量方法有超声波测量、脉冲电流法、光测量法、介质损耗率测量法、化学检测法、红外检测法等,在其中超声波测量法、脉冲电流法、超高频法是现阶段核心的检测方式。 在具体运用过程中,假如能够明晰电力变压器局部放电所形成的高频信号的特征,并掌握放电类型与其相互之间存在的对应关系,则能很大程度上提高电力变压器局部放电故障判断的准确性,假如能够对收集到的数据开展深入细致的解析,还能完成故障的预测分析。特高频局部放电定位方式关键依据放电信号的强度变化规律和时延规律,分别对应幅值定位法和时差定位法。