家电异音检测可以按照下图所示的技术途径来实施。按照机器学习的要求,通过传声器和信号采集系统进行声信号样本采集,需要注意的是采集得到的声信号既包含家电的运转声,也包括生产线的环境噪声。采用现有成熟的多种信号处理方法对所测声信号进行预处理,通过分析比较和尝试,组成最佳的信号特征向量,该向量应该能够最大程度反映家电状态信号,同时抑制环境噪声。 常用的信号特征提取方法一般包括时域、频域和时频域三类,时域的典型特征有短时能量和过零率;频域的特征种类繁多,有各种谱分析方法、线性预测系数以及梅尔频率倒谱系数等;时频特征包含短时傅里叶谱和小波谱,时频特征会带来较大的计算量,但却更能完整全面地描述音频信号。
根据信号特征向量将声信号样本转化为数据集,数据集包括训练集、验证集和集。选择合适的机器学习模型,将数据集应用于机器学习模型进行训练、验证和,通过多次循环,通过优化分析,在数据集的基础上,获取机器学习面向具体工程问题的最优参数,包括最优的特征向量、机器学习算法和异音检测法则,这几个环节可能需要多次循环才能得到最优的参数组合。最后,机器学习得到的分类法需要导入异音在线检测系统,在实际的生产线上进行运行调试,最终在生产线上完成部署。
家电异音检测系统的架构,系统由硬件和软件两部分共同组成了一个不可分割的整体,硬件部分包括测量环境、传感器、采集系统和判别系统,测量环境可以是基本不做改动的原始生产线,也可以是在生产线上设计添加的简易隔声或吸声空间,测量环境的考虑重点是如何减少生产线环境噪声的影响。传感器和采集系统一般要求满足可听声频带的采样要求,对系统的量化精度要求至少采用16位采集系统,能达到24位更好。判别系统一般是采集系统和计算机的结合体,计算机上运行的软件是信号特征提取算法和机器学习模型。 软件部分中的信号测量分析模块主要完成信号的采集和保存,应用信号处理技术,特征提取模块抽取声信号样本特征,构建特征向量和机器学习数据集。机器学习模块实现各种机器学习算法,在特征向量数据集的基础上,完成训练、验证和等环节,最终获得异音判别参数,过程中还包括特征向量和机器学习模型参数的选择与优化。