• 产品|
  • 采购|
  • 企业|
  • 资讯|
  • 展会|

客服QQ:544721284

您所在的位置:首页 > 资讯 > 分析预测 > 关于设计并测试状态监测和预测性维护算法的新工具箱的性能分析和应用

关于设计并测试状态监测和预测性维护算法的新工具箱的性能分析和应用

日期: 2021-03-30 浏览人数: 110 来源: 编辑:

分享到:
核心提示:  新的MATLAB 产品Predictive Maintenance Toolbox,帮助工程师设计并测试状态监测和预测性维护算法。PredictiveMaintenance T

  新的MATLAB 产品Predictive Maintenance Toolbox,帮助工程师设计并测试状态监测和预测性维护算法。PredictiveMaintenance Toolbox 为算法工程师提供了一系列功能和参考范例,用来组织数据、设计状态指标、监测机器运行状况和预估剩余使用寿命 (RUL),从而避免设备故障。

  借助 Predictive MaintenanceToolbox,工程师能分析和标注从存储于本地或云端的文件中导入的传感器数据。他们还能标注从 Simulink 模型生成的仿真故障数据以表征设备故障。利用在频谱分析和时序分析等技术所构建的信号处理和动态建模方法,工程师能够预处理数据并提取可用来监测机器状态的特征。

  现在,工程师开发和验证必要的算法,通过监测传感器数据,以预测设备何时可能发生故障,或检测任何潜在的异常现象。这些算法可以通过访问存储在本地文件系统、云存储系统(如Amazon S3 和 Windows Azure Blob 存储)或 Hadoop 分布式文件系统上的历史数据,得以开发。另一个数据源是来自包含故障动态的设备物理模型的仿真数据。工程师可以从此数据中提取和选择最合适的特征,然后借助交互式应用程序,用这些特征训练机器学习模型,以预测或检测设备故障。

  “预测性维护是工业物联网的一个重要应用。它对于减少不必要的维护成本和消除计划外停机十分关键。那些通常没有机器学习或信号处理背景的工程师会发现,设计预测性维护的算法特别具有挑战性。”MathWorks 公司技术市场经理 Paul Pilotte 说,“现在,通过使用 Predictive Maintenance Toolbox 学习如何设计和测试这些算法作为起点,这些团队能够快速上手并提高。”

  MathWorks是数学计算软件领域世界领先的开发商。它所推出的MATLAB是一种用于算法开发、数据分析、可视化和数值计算的程序设计环境,称为“科学计算的语言”。Simulink是一种图形环境,可用于对多域动态系统和嵌入式系统进行仿真和基于模型设计。全球的工程师和科学家们都依赖于MathWorks公司所提供的这些产品系列,来加快在汽车、航空、电子、金融服务、生物医药以及其他行业的发明、创新及开发的步伐。

免责声明:
本网站部分内容来源于合作媒体、企业机构、网友提供和互联网的公开资料等,仅供参考。本网站对站内所有资讯的内容、观点保持中立,不对内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如果有侵权等问题,请及时联系我们,我们将在收到通知后第一时间妥善处理该部分内容。

微信

关注地摊库官方微信账号:“ditanku”,每日获得互联网最前沿资讯,热点产品深度分析!
关键词: 预测性分析
0条 [查看全部]  相关评论