氮气(载气)、氢气和空气流速的变化直接影响FPD的灵敏度、信噪比、选择性和线性范围。氮气流速在一定范围变化时,对的检测无影响。对S的检测,表现出峰高与峰面积随氮气流量增加而增大;继续增加时,峰高和峰面积逐渐下降。这是因为作为稀释剂的气流量增加时,火焰温度降低,有利于S的响应,超过最佳值后,则不利于S的响应,无论S还是P的测定,都有各自最佳的氮气和空气的比值并随FPD的结构差异而不同,测P比测S需要更大的氢气流速。极性的含S化合物容易被各种固体表面(金属管壁、载体表面)吸附,分析二氧化硫硫化氢、甲硫醇等低分子硫化物时,甚至须采用全聚四氟乙烯系统美国 Varian公司推出的脉冲式火焰光度检测器(PFPD)在检测技术上有新突破,结构如图3所示。独特的脉冲火焰设计为检测S、P、N化合物提供了最佳的选择性和灵敏度。空气和氢气的消耗也比标准的FPD降低10倍,比化学荧光检测器降低20倍。并且解决了FPD的淬火问题。
现阶段有关机理并不十分清楚(可以用是各位突破的一个方向),但通常认为是化学电离过程:有机物燃烧产生自由基,自由基与O2作用产生正离子,再与水作用生成H3O+。以苯为例:在电场作用下,正离子和电子被收集到两极,产生电流。载气和氢气流速:通常以N2为载气,其流速主要考虑其柱效能。但也要考虑其流速与H2流速相匹配。一般N2:H2 = 1:1~1:1.5;空气流速:流速越大。灵敏度越大,到一定值时,空气流速对灵敏度影响不大。一般地,H2:Air = 1:10。极化电压:在50V以下时,电压越高,灵敏度越高。但在50V以上,则灵敏度增加不明显。通常选择±100~±300V的极化电压操作温度:比柱的最高允许使用温度低约 50度(防止固定液流失及基线漂移)为质量型检测器,色谱峰高取决于单位时间内引入检测器中组分的质量。在样品量一定时,峰高与载气流速成正比。因此在用峰高定量时,应控制载气流速恒定!
火焰检测器是锅炉炉膛安全监控系统中的重要设备,其作用是根据火焰的燃烧特性对燃烧工况进行实时检测,一旦火焰燃烧状态不满足正常条件或熄火时,按一定方式给出信号,保证锅炉灭火时停止燃料供应。 它主要是由探头和信号处理器两个部分组成。它的作用贯穿于从锅炉启动至满负荷运行的全过程,用于判定全炉膛内或单元燃烧器火焰的建立/熄灭或有火与无火,当发生全炉膛灭火或单元燃烧器熄火时,火焰检测设备触点准确动作发出报警,依靠FSSS系统连锁功能,停止相应给粉机、磨煤机、燃油总阀或一次风机等的运行,防止炉膛内积聚燃料,异常情况被点燃引起锅炉爆炸恶性事故的发生,因此设备性能即设备运行的可靠性与检测的准确性直接关系到机组的运行安全与稳定性。