异音检测的两种模型: 人工听检的自动化替代技术主要有两类模型,一类是参数驱动模型,另一类是基于人工智能的数据驱动模型。前者通过分析比较找到一个标准参数范围,在范围之内的为正常,在范围之外的为故障,但这样的参数范围却很难选择确定,因为人工听检所依据的判断规则很难用显示的参数来描述;人工智能则可以模拟人的学习和判断过程,通过特定的模型描述那些只能意会却无法言传的判断规则。下图给出了两类模型的比较。
根据信号特征向量将声信号样本转化为数据集,数据集包括训练集、验证集和集。选择合适的机器学习模型,将数据集应用于机器学习模型进行训练、验证和,通过多次循环,通过优化分析,在数据集的基础上,获取机器学习面向具体工程问题的最优参数,包括最优的特征向量、机器学习算法和异音检测法则,这几个环节可能需要多次循环才能得到最优的参数组合。最后,机器学习得到的分类法需要导入异音在线检测系统,在实际的生产线上进行运行调试,最终在生产线上完成部署。
在线异音检测可以说是人工智能技术在家电生产过程中的一个合适应用场景,但要想与家电生产流程真正无缝结合,真正替代人工声检,还需要解决很多技术和管理上的难题,技术难题包括产线节拍匹配、信号采集、环境噪声消除、训练样本选择、合适学习模型确定等,管理难题包括检测规范与标准的制定以及检测流程的重构等,解决这些难题的方法和思路将在后续详细深入讨论。