根据信号特征向量将声信号样本转化为数据集,数据集包括训练集、验证集和集。选择合适的机器学习模型,将数据集应用于机器学习模型进行训练、验证和,通过多次循环,通过优化分析,在数据集的基础上,获取机器学习面向具体工程问题的最优参数,包括最优的特征向量、机器学习算法和异音检测法则,这几个环节可能需要多次循环才能得到最优的参数组合。最后,机器学习得到的分类法需要导入异音在线检测系统,在实际的生产线上进行运行调试,最终在生产线上完成部署。
家电异音检测系统的架构,系统由硬件和软件两部分共同组成了一个不可分割的整体,硬件部分包括测量环境、传感器、采集系统和判别系统,测量环境可以是基本不做改动的原始生产线,也可以是在生产线上设计添加的简易隔声或吸声空间,测量环境的考虑重点是如何减少生产线环境噪声的影响。传感器和采集系统一般要求满足可听声频带的采样要求,对系统的量化精度要求至少采用16位采集系统,能达到24位更好。判别系统一般是采集系统和计算机的结合体,计算机上运行的软件是信号特征提取算法和机器学习模型。 软件部分中的信号测量分析模块主要完成信号的采集和保存,应用信号处理技术,特征提取模块抽取声信号样本特征,构建特征向量和机器学习数据集。机器学习模块实现各种机器学习算法,在特征向量数据集的基础上,完成训练、验证和等环节,最终获得异音判别参数,过程中还包括特征向量和机器学习模型参数的选择与优化。
随着机电自动化技术的进步,家电生产线中许多需要体力劳动的工位逐渐被机械手所代替,但仍有很多非体力工位还离不开人,比如视检和听检工位,不需要人的体力或操作,而要靠人的眼睛和耳朵来判断产品的某项指标是否品质合格,这样的工位就需要人工智能才能很好完成替代。 由于图像处理技术的迅猛发展,视检工位目前已有了很多很好的替代方案,但由于产线上声环境复杂,检测规则难易实现简单的参数化描述,听检工位目前大多还是要靠人工来完成。但是,人工听检存在下图列出的种种问题,已难以满足产线智能化升级的需要。从表中也可以看出,人工听检的缺点正好就是人工智能检测的优势所在。