家电异音检测可以按照下图所示的技术途径来实施。按照机器学习的要求,通过传声器和信号采集系统进行声信号样本采集,需要注意的是采集得到的声信号既包含家电的运转声,也包括生产线的环境噪声。采用现有成熟的多种信号处理方法对所测声信号进行预处理,通过分析比较和尝试,组成最佳的信号特征向量,该向量应该能够最大程度反映家电状态信号,同时抑制环境噪声。 常用的信号特征提取方法一般包括时域、频域和时频域三类,时域的典型特征有短时能量和过零率;频域的特征种类繁多,有各种谱分析方法、线性预测系数以及梅尔频率倒谱系数等;时频特征包含短时傅里叶谱和小波谱,时频特征会带来较大的计算量,但却更能完整全面地描述音频信号。
根据信号特征向量将声信号样本转化为数据集,数据集包括训练集、验证集和集。选择合适的机器学习模型,将数据集应用于机器学习模型进行训练、验证和,通过多次循环,通过优化分析,在数据集的基础上,获取机器学习面向具体工程问题的最优参数,包括最优的特征向量、机器学习算法和异音检测法则,这几个环节可能需要多次循环才能得到最优的参数组合。最后,机器学习得到的分类法需要导入异音在线检测系统,在实际的生产线上进行运行调试,最终在生产线上完成部署。
随着机电自动化技术的进步,家电生产线中许多需要体力劳动的工位逐渐被机械手所代替,但仍有很多非体力工位还离不开人,比如视检和听检工位,不需要人的体力或操作,而要靠人的眼睛和耳朵来判断产品的某项指标是否品质合格,这样的工位就需要人工智能才能很好完成替代。 由于图像处理技术的迅猛发展,视检工位目前已有了很多很好的替代方案,但由于产线上声环境复杂,检测规则难易实现简单的参数化描述,听检工位目前大多还是要靠人工来完成。但是,人工听检存在下图列出的种种问题,已难以满足产线智能化升级的需要。从表中也可以看出,人工听检的缺点正好就是人工智能检测的优势所在。