异音检测的两种模型: 人工听检的自动化替代技术主要有两类模型,一类是参数驱动模型,另一类是基于人工智能的数据驱动模型。前者通过分析比较找到一个标准参数范围,在范围之内的为正常,在范围之外的为故障,但这样的参数范围却很难选择确定,因为人工听检所依据的判断规则很难用显示的参数来描述;人工智能则可以模拟人的学习和判断过程,通过特定的模型描述那些只能意会却无法言传的判断规则。下图给出了两类模型的比较。
家电异音检测系统的架构,系统由硬件和软件两部分共同组成了一个不可分割的整体,硬件部分包括测量环境、传感器、采集系统和判别系统,测量环境可以是基本不做改动的原始生产线,也可以是在生产线上设计添加的简易隔声或吸声空间,测量环境的考虑重点是如何减少生产线环境噪声的影响。传感器和采集系统一般要求满足可听声频带的采样要求,对系统的量化精度要求至少采用16位采集系统,能达到24位更好。判别系统一般是采集系统和计算机的结合体,计算机上运行的软件是信号特征提取算法和机器学习模型。 软件部分中的信号测量分析模块主要完成信号的采集和保存,应用信号处理技术,特征提取模块抽取声信号样本特征,构建特征向量和机器学习数据集。机器学习模块实现各种机器学习算法,在特征向量数据集的基础上,完成训练、验证和等环节,最终获得异音判别参数,过程中还包括特征向量和机器学习模型参数的选择与优化。
在线异音检测可以说是人工智能技术在家电生产过程中的一个合适应用场景,但要想与家电生产流程真正无缝结合,真正替代人工声检,还需要解决很多技术和管理上的难题,技术难题包括产线节拍匹配、信号采集、环境噪声消除、训练样本选择、合适学习模型确定等,管理难题包括检测规范与标准的制定以及检测流程的重构等,解决这些难题的方法和思路将在后续详细深入讨论。