家电异音检测可以按照下图所示的技术途径来实施。按照机器学习的要求,通过传声器和信号采集系统进行声信号样本采集,需要注意的是采集得到的声信号既包含家电的运转声,也包括生产线的环境噪声。采用现有成熟的多种信号处理方法对所测声信号进行预处理,通过分析比较和尝试,组成最佳的信号特征向量,该向量应该能够最大程度反映家电状态信号,同时抑制环境噪声。 常用的信号特征提取方法一般包括时域、频域和时频域三类,时域的典型特征有短时能量和过零率;频域的特征种类繁多,有各种谱分析方法、线性预测系数以及梅尔频率倒谱系数等;时频特征包含短时傅里叶谱和小波谱,时频特征会带来较大的计算量,但却更能完整全面地描述音频信号。
家电异音检测系统的架构,系统由硬件和软件两部分共同组成了一个不可分割的整体,硬件部分包括测量环境、传感器、采集系统和判别系统,测量环境可以是基本不做改动的原始生产线,也可以是在生产线上设计添加的简易隔声或吸声空间,测量环境的考虑重点是如何减少生产线环境噪声的影响。传感器和采集系统一般要求满足可听声频带的采样要求,对系统的量化精度要求至少采用16位采集系统,能达到24位更好。判别系统一般是采集系统和计算机的结合体,计算机上运行的软件是信号特征提取算法和机器学习模型。 软件部分中的信号测量分析模块主要完成信号的采集和保存,应用信号处理技术,特征提取模块抽取声信号样本特征,构建特征向量和机器学习数据集。机器学习模块实现各种机器学习算法,在特征向量数据集的基础上,完成训练、验证和等环节,最终获得异音判别参数,过程中还包括特征向量和机器学习模型参数的选择与优化。
随着机电自动化技术的进步,家电生产线中许多需要体力劳动的工位逐渐被机械手所代替,但仍有很多非体力工位还离不开人,比如视检和听检工位,不需要人的体力或操作,而要靠人的眼睛和耳朵来判断产品的某项指标是否品质合格,这样的工位就需要人工智能才能很好完成替代。 由于图像处理技术的迅猛发展,视检工位目前已有了很多很好的替代方案,但由于产线上声环境复杂,检测规则难易实现简单的参数化描述,听检工位目前大多还是要靠人工来完成。但是,人工听检存在下图列出的种种问题,已难以满足产线智能化升级的需要。从表中也可以看出,人工听检的缺点正好就是人工智能检测的优势所在。